首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   160篇
  国内免费   197篇
  2023年   31篇
  2022年   17篇
  2021年   50篇
  2020年   55篇
  2019年   67篇
  2018年   54篇
  2017年   60篇
  2016年   55篇
  2015年   51篇
  2014年   50篇
  2013年   67篇
  2012年   39篇
  2011年   39篇
  2010年   38篇
  2009年   54篇
  2008年   40篇
  2007年   53篇
  2006年   47篇
  2005年   26篇
  2004年   28篇
  2003年   34篇
  2002年   33篇
  2001年   31篇
  2000年   34篇
  1999年   20篇
  1998年   20篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   6篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1150条查询结果,搜索用时 31 毫秒
61.
62.
Efforts to arrest the spread of invasive weeds with herbivory may be hindered by weak effects of the herbivores or strong compensatory responses of the invaders. We conducted a greenhouse experiment to study the effects of defoliation and soil fungi on competition between the invasive weed Centaurea solstitialis and C. solstitialis and Avena barbata, a naturalized Eurasian annual grass, and Nassella pulchra, a native California bunchgrass. Surprisingly, considering the explosive invasion of grasslands by C. solstitialis, Avena and Nassella were strong competitors and reduced the invader’s biomass by 80.2% and 80.1% over all defoliation and soil fungicide treatments, respectively. However, our experiments were conducted in artificial environments where competition was probably accentuated. When fungicide was applied to the soil, the biomass of C. solstitialis was reduced in all treatment combinations, but reduction in the biomass of the invader had no corollary impact on the grasses. There was no overall effect of defoliation on the final biomass of C. solstitialis as the invader compensated fully for severe clipping. In fact, the directional trend of the clipping effect was +6.4% over all treatments after eight weeks. A significant neighbor × soil fungicide × clipping effect suggested that the compensatory response was the strongest without soil fungicide and when C. solstitialis was alone (+ 19%). Our key finding was that the compensatory response of C. solstitialis in all treatments was associated with an increase in the weed’s negative effects on Nassella and Avena – there was a significant decrease in the total biomass of both grasses and the reproductive biomass of Avena in pots with clipped C. solstitialis. Our results were obtained in controlled conditions that may have been conducive to compensatory growth, but they suggest the existence of mechanisms that may allow C. solstitialis, like other Centaurea species, to resist herbivory.  相似文献   
63.
Invasion of native habitats by alien or generalist species is recognized worldwide as one of the major causes behind species decline and extinction. One mechanism determining community invasibility, i.e. the susceptibility of a community to invasion, which has been supported by recent experimental studies, is species richness and functional diversity acting as barriers to invasion. We used Scandinavian semi-natural grasslands, exceptionally species-rich at small spatial scales, to examine this mechanism, using three grassland generalists and one alien species as experimental invaders. Removal of two putative functional groups, legumes and dominant non-legume forbs, had no effect on invasibility except a marginally insignificant effect of non-legume forb removal. The amount of removed biomass and original plot species richness had no effect on invasibility. Actually, invasibility was high already in the unmanipulated community, leading us to further examine the relationship between invasion and propagule pressure, i.e. the inflow of seeds into the community. Results from an additional experiment suggested that these species-rich grasslands are effectively open to invasion and that diversity may be immigration driven. Thus, species richness is no barrier to invasion. The high species diversity is probably in itself a result of the community being highly invasible, and species have accumulated at small scales during centuries of grassland management.  相似文献   
64.
Ye M S  Guan W B  Wu B  Ma K M  Liu G H  Wang X L  Chen Q Y 《农业工程》2006,26(10):3159-3165
Biocomplexity theory is becoming increasingly important in understanding natural vegetation dynamics and interrelation among all components of the ecosystem. In this study, based on the field investigation of plant species and environmental factors (altitude, microtopography, soil water content, and soil nutrients) in an arid valley of the upper reaches of Minjiang River, Sichuan Province, southwestern China, plant community complexity and its relationship with environmental factors, community diversity, species evenness and richness were studied. Both total and structural complexities of the communities showed a “high- low-high” tendency with the increase in altitude of the area, which meant that the complexity of communities was the highest at the sites of low and high altitude, whereas it was the lowest at the sites of intermediate altitude. It was found that the total community complexity had significant quadratic correlations with soil organic matter (SOM) content, total nitrogen (N), hydrolyzable N, soil water content, and available potassium (K), whereas it had no significant correlations with soil total K, total phosphorus (P), available P, and pH value. The total community complexity positively correlated with community diversity, species evenness and species richness, whereas the structural complexity negatively correlated with the community evenness. Of the two components of the total community complexity, namely, the structural complexity and the structural diversity, the structural complexity was more sensitive than the structural diversity to the changes of species in the community, which was not only related to the community evenness but also to the community richness. The relative contribution of both the structural complexity and the structural diversity to the total complexity would be different for different study areas or ecosystems.  相似文献   
65.
R. Z. Wang 《Photosynthetica》2006,44(2):293-298
Floristic composition, morphological functional types and habitat distributions for C4 species were studied in Xinjiang, North-western China. 89 species, in 9 families and 41 genera, were identified with C4 photosynthesis. 48 % of these C4 species were found in Monocotyledoneae, e.g. Cyperaceae (5 species), Gramineae (38 species), the other 52 % was in Dicotyledoneae, e.g. Chenopodiaceae (29 species), Amaranthaceae (7 species), and Polygonaceae (5 species). Compared with those in semi-arid grasslands in North China and tropical forests in South China, more plant families were found with the occurrence of C4 plants in this arid region. Relatively higher annual species (63 %), shrubs (18 %), and Chenopodiaceae C4 species (33 %) compositions were the primary characteristics for the C4 species occurring in Xinjiang, and this was remarkably related with its arid environment. More Chenopodiaceae C4 species occurring in the region suggested that this type of C4 species may have higher capacity to fit the air and soil droughts. There was a strong relationship between C4 occurrence and habitat distributions, more than half of the total 89 C4 species were found in disturbed and cultivated lands and early stages of vegetation successions, indicating C4 occurrence was not only related with climate changes, but also with land uses and vegetation dynamics.  相似文献   
66.
The association between plant and plant growth promoting bacteria (PGPB) contributes to the successful thriving of plants in extreme environments featured by water shortage. We have recently shown that, with respect to the non-cultivated desert soil, the rhizosphere of pepper plants cultivated under desert farming hosts PGPB communities that are endowed with a large portfolio of PGP traits. Pepper plants exposed to bacterial isolates from plants cultivated under desert farming exhibited a higher tolerance to water shortage, compared with untreated control. This promotion was mediated by a larger root system (up to 40%), stimulated by the bacteria, that enhanced plant ability to uptake water from dry soil. We provide initial evidence that the nature of the interaction can have a limited level of specificity and that PGPB isolates may determine resistance to water stress in plants others than the one of the original isolation. It is apparent that, in relation to plant resistance to water stress, a feature of primary evolutionary importance for all plants, a cross-compatibility between PGPB and different plant models exists at least on a short-term.  相似文献   
67.
Background: Understanding the role of livestock grazing on plant diversity can be improved by an accurate measurement of diversity at all hierarchical scales due to the changeability of diversity components in space.

Aims: We evaluated the effects of grazing on plant species diversity at different scales of all common and rare species in two regions that have different climatic conditions (arid vs. semi-arid).

Methods: In each region, we collected abundant data of plant species from a nested sampling design that consisted of local (80 plots) and regional (16 sites) scales. We partitioned total species diversity (γ) into within plots (αl), among plots (βl) and among sites (β2) using the additive partitioning.

Results: Diversity among sites contributed the most to total diversity for all and rare plant species in both regions. In addition, α1 and β1 diversities in ungrazed areas were greater than those in grazed areas for all and common species in both climates.

Conclusion: Abandonment of grazing after 10 years resulted in significant regeneration of common species at the local scale, with no change in rare species. We conclude that low grazing intensity is likely to be an important tool for conservation of plant diversity in which all scales should be considered.  相似文献   
68.
Understanding how soil respiration (Rs) and its source components respond to climate warming is crucial to improve model prediction of climate‐carbon (C) feedback. We conducted a manipulation experiment by warming and clipping in a prairie dominated by invasive winter annual Bromus japonicas in Southern Great Plains, USA. Infrared radiators were used to simulate climate warming by 3 °C and clipping was used to mimic yearly hay mowing. Heterotrophic respiration (Rh) was measured inside deep collars (70 cm deep) that excluded root growth, while total soil respiration (Rs) was measured inside surface collars (2–3 cm deep). Autotrophic respiration (Ra) was calculated by subtracting Rh from Rs. During 3 years of experiment from January 2010 to December 2012, warming had no significant effect on Rs. The neutral response of Rs to warming was due to compensatory effects of warming on Rh and Ra. Warming significantly (P < 0.05) stimulated Rh but decreased Ra. Clipping only marginally (P < 0.1) increased Ra in 2010 but had no effect on Rh. There were no significant interactive effects of warming and clipping on Rs or its components. Warming stimulated annual Rh by 22.0%, but decreased annual Ra by 29.0% across the 3 years. The decreased Ra was primarily associated with the warming‐induced decline of the winter annual productivity. Across the 3 years, warming increased Rh/Rs by 29.1% but clipping did not affect Rh/Rs. Our study highlights that climate warming may have contrasting effects on Rh and Ra in association with responses of plant productivity to warming.  相似文献   
69.
Effects of grazing on grassland soil carbon: a global review   总被引:2,自引:0,他引:2  
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta‐analysis of grazer effects on SOC density on 47 independent experimental contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (±150 g m?2 yr?1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation produced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4‐dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3‐dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife‐dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4‐dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context‐specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号